18918712959
上海瀚翎致力于研发、生产、销售科学仪器
联系我们

About Hankopqk@ling169

This author has not yet filled in any details.
So far Hankopqk@ling169 has created 298 blog entries.

多功能静电纺丝机

EM500 多功能静电纺丝机 多功能静电纺丝机 提供了一个桌面型实验平台,用于实验室制备均匀的纳米纤维膜或者纳米颗粒涂层,以服务于新材料、生物医药、新能源、功能纺织品和功能膜等研究。该设备体积小,因此适合放置于实验台上,并可以放置在通风橱内,可适用毒性较高的有机溶剂。触摸屏集成多功能控制,操作简便,是一款经济实用型的静电纺丝机。 桌面型,体积小,可放置通风橱内 集成多种功能,简便操控 允许使用多种喷头(包括超声喷头)和多种收集装置 可制备丝径500nm-200μm的纳米纤维 高精度供液系统,最小供液量0.01ml/h [...]

静电纺丝介绍

静电纺丝介绍 静电纺丝是一种利用高压静电场使聚合物溶液或熔体形成超细纤维的材料制备技术,可生产直径从几纳米到几微米的纤维,是制备纳米纤维的核心方法之一。 1. 基本原理 核心是通过静电场克服纺丝液的表面张力与黏滞力,形成喷射流并最终固化为纤维,具体步骤如下: 纺丝液准备:将聚合物(如聚乙烯醇、聚乳酸等)溶解或熔融,制成具有一定黏度的纺丝液,装入注射器。 施加静电场:在注射器针头与接收装置(如金属板、滚筒)之间施加高压电源(通常10-30kV),使针头处的纺丝液形成带电液滴。 喷射与拉伸:当静电斥力大于纺丝液表面张力时,液滴被拉伸成细长的“喷射流”,过程中溶剂挥发(溶液纺丝)或熔体冷却(熔体纺丝)。 纤维收集:固化后的超细纤维被沉积在接地的接收装置上,形成无序或有序的纤维膜。 2. [...]

静电纺丝技术原理与应用

静电纺丝技术原理与应用 一、核心原理 静电纺丝的基本原理并不复杂,主要包含三个核心部件和以下几个步骤: 核心部件: 1. 高压电源:提供数千至数万伏的高压直流电。 2. 注射泵和纺丝针头:用于精确控制并挤出聚合物溶液或熔体,形成微小的液滴。 3. 接收装置:通常是一个接地或带负电的金属滚筒或平板,用于收集生成的纤维。 [...]

用于过滤的PTFE膜是如何形成的 ?

用于过滤的PTFE膜是如何形成的 ? 聚四氟乙烯(PTFE)与膨体聚四氟乙烯(ePTFE)的发现源于早期实验室研究中的偶然突破,但其诞生并非单纯依赖运气,而是科研人员长期钻研、技术积累的成果。在 ePTFE 材料的创新进程中,有研究团队率先探索其与纺织品、非织造布的复合工艺,成功开发出具备过滤功能的复合膜材料。在各类含氟聚合物中,PTFE 拥有最低的摩擦系数,同时具备优异的耐热性、化学稳定性与不粘性,这些核心特性为其过滤应用奠定了坚实基础。 将 PTFE 的固有性能与膨胀处理形成的物理纤维结构相结合,可得到一种高度多孔、功能可定制的材料,这种材料能显著提升过滤介质的综合性能。膨体聚四氟乙烯(ePTFE)膜可允许气体与蒸汽顺利通过,同时阻挡液体渗透;其微孔结构还能将颗粒拦截在膜表面,减少介质内部堵塞,进而延长过滤器使用寿命。这类精细过滤产品几乎能消除过滤启动及清洁循环阶段的污染物排放,降低环境影响。 多年来,随着更多制造商入局与技术迭代,ePTFE [...]

锂离子电池制造工艺之匀浆

锂离子电池制造工艺之匀浆 一、为何聚焦 “匀浆”? 若将锂离子电池制造比作烘焙糕点,匀浆就如同 “搅打蛋液”—— 表面是简单混合,实则决定了后续涂布、辊压工序的质量上限,甚至直接影响电池的循环寿命。行业数据显示:由匀浆环节导致的极片缺陷,占后续极片报废原因的 35% 以上。换言之,这一步若出现疏漏,后续即便使用高端设备,也只能疲于弥补短板。 二、匀浆的核心是什么? 简言之:匀浆是将主活性粉、粘结剂、导电剂与溶剂在密闭罐体中,通过特定工艺步骤,混合成均匀非牛顿流体的过程。除传统机械混合方式外,超声波分散技术因在微纳米级物料分散中的独特优势,正逐渐应用于锂电池匀浆工艺中。 [...]

锂离子与钠离子电池电解液配方的差异解析

锂离子与钠离子电池电解液配方的差异解析 锂电池与钠电池虽同属离子电池体系,均依靠离子在正负极之间的迁移来实现能量存储与释放,但二者在电解液配方上存在显著差异。由于锂与钠的离子特性不同,其在溶质选择、溶剂组成及添加剂应用等方面均体现出各自的特点。尽管两者电解液在外观上均为液态介质,其内在设计思路和材料体系却具有本质区别。 一、溶质的选择 锂电池电解液通常采用锂盐作为溶质,其中六氟磷酸锂(LiPF₆)占据主流地位。该类锂盐解离能力强,能在碳酸酯类溶剂中高效释放锂离子,并在负极协助形成稳定的固态电解质界面(SEI)膜。 钠电池则普遍使用六氟磷酸钠(NaPF₆)作为基础溶质。但由于钠离子半径大于锂离子,其解离能力相对较弱,导致同等浓度下电解液的电导率通常较低。出于成本控制与性能优化的综合考虑,钠电池也常采用如四氟硼酸钠(NaBF₄)或高氯酸钠(NaClO₄)等钠盐。 根本差异源于离子尺寸:锂离子能够与碳酸酯类溶剂形成稳定且紧密的溶剂化结构,而钠离子的溶剂化层较为松散,因此对溶质与溶剂之间的匹配性提出更高要求。 二、溶剂的组成设计 锂电池电解液多采用成熟的碳酸酯类溶剂体系,通常由环状碳酸酯(如EC、PC)与链状碳酸酯(如DMC、EMC)复配而成,以兼顾高介电常数和低粘度,保障离子高效迁移。 钠电池对溶剂配伍的要求更为严苛:环状碳酸酯PC易与硬碳负极发生共嵌入,导致结构损伤,因此更多选用EC与链状碳酸酯(如DMC、DEC)的组合。此外,钠离子溶剂化能较高,需借助更多低粘度溶剂(如链状碳酸酯占比超过60%)以促进脱溶剂过程。有时还会引入醚类溶剂以提升低温性能,而这在高压锂电池中较为少见,因其抗氧化能力较差。 三、添加剂的作用机制 [...]

锂电芯析锂不良原因及改善

锂电芯析锂不良原因及改善 锂析出(Lithium Plating)是指锂离子在负极表面发生还原反应,形成金属锂沉积的现象。这一过程不同于锂离子正常嵌入负极材料的层状结构,可以理解为部分锂原子未能及时嵌入,而被“滞留”在电极表面,逐渐形成金属枝晶。 以下从电芯设计、材料体系、制造工艺和使用条件四个维度,系统阐述锂析出的主要原因及改善策略。 一、电芯设计与材料体系 1. 负极冗余容量不足(N/P 比偏低) 原因:N/P 比(负极与正极容量比)过低(如<1.1)时,负极无法完全容纳从正极脱出的锂离子,尤其在充电末期,多余锂离子易在表面沉积。 [...]

锂离子电池工作原理

锂离子电池工作原理 今天我们来聊聊锂离子电池,用一个通俗的比喻帮你轻松理解它的工作原理:它就像一位忙碌的“锂离子搬运工”,通过锂离子在正负极之间的来回“搬家”,实现电能的存储与释放。 一、基本结构:一座精心设计的“离子公寓” 锂离子电池主要包括四个部分: 正极(+):通常采用含锂的金属氧化物材料,可视为锂离子的“来源之地”或“起点站”。 负极(-):一般由石墨等碳材料构成,作为锂离子在充放电过程中的“暂住地”。 电解液:位于正负极之间,是一种可导通离子的液态或固态介质,相当于锂离子移动的“专用通道”。 隔膜:一层具有微孔结构的高分子薄膜,起到隔离正负极的作用。它像一扇“智能门”,仅允许锂离子通过,而阻挡电子直接穿越,从而防止短路。 二、放电过程(供电时):锂离子从负极“返回”正极 当你使用设备,如打开手机或启动电动车时,电池开始放电。 [...]

手提式超声波点焊机优势

手提式超声波点焊机优势 在现代工业生产与日常维修场景中,焊接工艺的灵活性与精准性需求日益增长。传统固定式焊接设备受限于场地与工件尺寸,难以满足复杂环境下的即时焊接需求。而手提式超声波点焊机以其便携设计、高效焊接和精准控制的特性,成为电子、汽车、家居、医疗等领域的 “移动焊接专家”,为多样化的焊接场景提供了创新解决方案 核心优势: 1. 灵活移动,突破场景限制 传统固定式焊机需工件迁就设备,而手提式点焊机可随时随地贴近工件作业。在汽车维修中,可直接对车内塑料部件(如仪表板裂缝、保险杠卡扣)进行现场焊接,无需拆卸部件,节省 50% 以上维修时间;在户外广告安装中,可快速焊接 LED [...]

台式点焊机焊接领域

台式点焊机焊接领域 在现代工业生产中,焊接技术作为一种关键的连接工艺,对于产品的质量和生产效率起着至关重要的作用。随着科技的不断进步,各种先进的焊接设备应运而生,超声波台式点焊机便是其中的佼佼者。它以其独特的工作原理、卓越的性能优势,在众多行业中得到了广泛应用,成为了工业焊接领域的得力助手。 一、工作原理 超声波台式点焊机利用超声波发生器将 50/60 赫兹的交流电转换为 15、20 千赫兹甚至更高频率的高频电能,这一过程犹如为设备注入了强大的 “能量源泉”。转换后的高频电能通过换能器再次被神奇地转化为同等频率的机械运动,恰似赋予了设备灵动的 “肢体”。机械运动通过一套精心设计的调幅器设备传递到焊头,焊头如同一位精准的 [...]

Go to Top